In situ study of hydrogen silsesquioxane dissolution rate in salty and electrochemical developers
نویسندگان
چکیده
In order to better characterize the development of the electron-beam resist hydrogen silsesquioxane (HSQ), the authors used a quartz crystal microbalance (QCM) to study its rate of dissolution in situ. The authors determined the effect of both salt concentration and applied electric potential on the development rate of HSQ. The development rates were measured by spinning HSQ directly onto a quartz crystal resonator, and then developing in a QCM microfluidic module. In order to more directly observe the effect of electric potentials on the HSQ development rate, a film of HSQ was partially cross-linked in an O2 plasma asher and then developed in the QCM flow module with a salt-free NaOH solution. As the partially cross-linked HSQ slowly developed, electric potentials were applied and removed from the crystal allowing the observation of how the development rate increased upon the application of a positive electric potential. The increased development rate caused by both the addition of salt ions and a positive electric potential suggests that the rate may be limited by a build-up of negative charge on the HSQ. VC 2011 American Vacuum Society. [DOI: 10.1116/1.3644339]
منابع مشابه
In situ activation of a Ni catalyst with Mo ion for hydrogen evolution reaction in alkaline solution
In this study Ni catalyst have been activated during hydrogen evolution reaction (HER) by adding Mo ions into the alkaline electrolyte. After dissolving different amounts of ammonium molybdate in the 1M NaOH as electrolyte, Ni catalyst was used as cathode for HER. Afterwards a comparison between hydrogen overpotential measured in Ni catalyst with and without in situ activation has been made; th...
متن کاملElectrochemical development of hydrogen silsesquioxane by applying an electrical potential.
We present a new method for developing hydrogen silsesquioxane (HSQ) by using electrical potentials and deionized water. Nested-L test structures with a pitch as small as 9 nm were developed using this electrochemical technique in saline solution without adding hydroxyl ions. Furthermore, we showed that high-resolution structures can be electrochemically developed in deionized water alone. Elec...
متن کاملContrast enhancement behavior of hydrogen silsesquioxane in a salty developer
The authors investigated a contrast enhancement behavior of hydrogen silsesquioxane HSQ in a salty development system NaOH /NaCl . Time-resolved analysis of contrast curves and line-grating patterns were carried out to investigate the unique properties of a salty development process. In NaOH developer without salt, the development process was saturated beyond a certain development time. On the ...
متن کاملUnderstanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography
The authors, demonstrated that 4.5-nm-half-pitch structures could be achieved using electron-beam lithography, followed by salty development. They also hypothesized a development mechanism for hydrogen silsesquioxane, wherein screening of the resist surface charge is crucial in achieving a high initial development rate, which might be a more accurate assessment of developer performance than dev...
متن کاملThegenesis of micro-landforms of muddy and salty plains of Urmia Lake
Introduction Urmia Lake is one of the word-scale large hypersaline lakes with about 5500 square kilometers in the Turkish-Iranian Plateau (NW Iran). The lake surrounded by mountains with a mean elevation of about 2000 meters and the highest peak of 4811 meters. The lake charge with 28 permanent and ephemeral rivers. As a result of anthropogenic and natural reasons, the lake exposed to the rapi...
متن کامل